1. Logistic regression vs machine learning

Under construction. (1-5)

2. Multicategory probabilities using SVM or kernel logistic regression

Under construction. (6)

3. Comparison of imputation methods for missing values

Under construction. (7)

4. The clinical kernel method for predictors of different measurement types

Under construction. (8)

5. Applications of different methods to diagnose ovarian tumors

SVMs based on image processing. Under construction. (9, 10)

Least squares SVMs. Under construction. (11-13)

Relevance vector machines. Under construction. (12, 13)

Bayesian neural networks. Under construction. (12, 14, 15)

Sequential non-uniform procedure based on Naïve Bayes. Under construction. (16)

Genetic algorithms. Under construction. (17)

Rule extraction. Under construction. (18)

Interval-coded scoring system. Under construction. (19)

Bayesian networks. Under construction. (20, 21)


Steyerberg EW, van der Ploeg T, Van Calster B. Risk prediction with machine learning and regression methods. Biom J. 2014;56(4):601-6.

Strobl AN, Vickers AJ, van Calster B, Steyerberg E, Leach RJ, Thompson IM, et al. Improving patient prostate cancer risk assessment: Moving from static, globally-applied to dynamic, practice-specific cancer risk calculators. J Biomed Inform. 2015.

Van Calster B, Condous G, Kirk E, Bourne T, Timmerman D, Van Huffel S. An application of methods for the probabilistic three-class classification of pregnancies of unknown location. Artif Intell Med. 2009;46(2):139-54.

Van Calster B, Valentin L, Van Holsbeke C, Testa AC, Bourne T, Van Huffel S, et al. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models. BMC Med Res Methodol. 2010;10:96.

Van Hoorde K, Van Huffel S, Timmerman D, Bourne T, Van Calster B. A spline-based tool to assess and visualize the calibration of multiclass risk predictions. J Biomed Inform. 2015;54:283-93.

Van Calster B, Luts J, Suykens JAK, Condous G, Bourne T, Timmerman D, et al. Comparing Methods for Multi-class Probabilities in Medical Decision Making Using LS-SVMs and Kernel Logistic Regression. 2007. p. 139-48.

Dimou I, Van Calster B, Van Huffel S, Timmerman D, Zervakis M. Evaluation of imputation methods in ovarian tumor diagnostic models using generalized linear models and support vector machines. Med Decis Making. 2010;30(1):123-31.

Daemen A, Timmerman D, Van den Bosch T, Bottomley C, Kirk E, Van Holsbeke C, et al. Improved modeling of clinical data with kernel methods. Artif Intell Med. 2012;54(2):103-14.

Khazendar S, Al-Assam H, Du H, Jassim S, Sayasneh A, Bourne T, et al., editors. Automated classification of static ultrasound images of ovarian tumours based on decision level fusion. Computer Science and Electronic Engineering Conference (CEEC), 2014 6th; 2014 25-26 Sept. 2014.

Khazendar S, Sayasneh A, Al-Assam H, Du H, Kaijser J, Ferrara L, et al. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator. Facts Views Vis Obgyn. 2015;7(1):7-15.

Lu C, Van Gestel T, Suykens JA, Van Huffel S, Vergote I, Timmerman D. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif Intell Med. 2003;28(3):281-306.

Lu C, Suykens JAK, Timmerman D, Vergote I, Van Huffel S. Linear and nonlinear classification of ovarian tumors. In: Ichimura T, K. Y, editors. International Series on Advanced Intelligence (Volume 7). Magill: Advanced Knowledge International; 2004. p. 343-82.

Van Calster B, Timmerman D, Lu C, Suykens JA, Valentin L, Van Holsbeke C, et al. Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods. Ultrasound Obstet Gynecol. 2007;29(5):496-504.

Van Calster B, Timmerman D, Nabney IT, Valentin L, Van Holsbeke C, Van Huffel S. Classifying ovarian tumors using Bayesian Multi-Layer Perceptrons and Automatic Relevance Determination: a multi-center study. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5342-5.

Van Calster B, Timmerman D, Nabney I, Valentin L, Testa A, Van Holsbeke C, et al. Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput & Applic. 2008;17(5-6):489-500.

Stalbovskaya V, Ifeachor EC, Van Huffel S, Timmerman D. A new method for modeling preoperative diagnosis of ovarian tumors. IEEE Trans Biomed Eng. 2007;54(11):2064-72.

Van Calster B, Gevaert O, Van Holsbeke C, De Moor B, Van Huffel S, Timmerman D. Clinical decision support for ovarian tumor diagnosis using Bayesian models: Results from the IOTA study. In: Masulli F, Micheli A, Sperduti A, editors. Computational Intelligence and Bioengineering: Essays in Memory of Antonina Starita. 196. Amsterdam: IOS Press; 2009. p. 111-28.

Aung MSH, Lisboa PJG, Etchells TA, Testa AC, Calster BV, Huffel SV, et al. Comparing Analytical Decision Support Models Through Boolean Rule Extraction: A Case Study of Ovarian Tumour Malignancy. 2007. p. 1177-86.

Van Belle VM, Van Calster B, Timmerman D, Bourne T, Bottomley C, Valentin L, et al. A mathematical model for interpretable clinical decision support with applications in gynecology. PLoS One. 2012;7(3):e34312.

Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med. 2004;30(3):257-81.

Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B. Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artif Intell Med. 2003;29(1-2):39-60.